HMM-based Activity Recognition with a Ceiling RGB-D Camera

نویسندگان

  • Daniele Liciotti
  • Emanuele Frontoni
  • Primo Zingaretti
  • Nicola Bellotto
  • Tom Duckett
چکیده

Automated recognition of Activities of Daily Living allows to identify possible health problems and apply corrective strategies in Ambient Assisted Living (AAL). Activities of Daily Living analysis can provide very useful information for elder care and long-term care services. This paper presents an automated RGB-D video analysis system that recognises human ADLs activities, related to classical daily actions. The main goal is to predict the probability of an analysed subject action. Thus, abnormal behaviour can be detected. The activity detection and recognition is performed using an affordable RGB-D camera. Human activities, despite their unstructured nature, tend to have a natural hierarchical structure; for instance, generally making a coffee involves a three-step process of turning on the coffee machine, putting sugar in cup and opening the fridge for milk. Action sequence recognition is then handled using a discriminative Hidden Markov Model (HMM). RADiaL, a dataset with RGB-D images and 3D position of each person for training as well as evaluating the HMM, has been built and made publicly available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Fast and Efficient HMM-Based Face Recognition System Using a 7-State HMM Along With SVD Coefficients

In this paper, a new Hidden Markov Model (HMM)-based face recognition system is proposed. As a novel point despite of five-state HMM used in pervious researches, we used 7-state HMM to cover more details. Indeed we add two new face regions, eyebrows and chin, to the model. As another novel point, we used a small number of quantized Singular Values Decomposition (SVD) coefficients as feature...

متن کامل

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

Continuous Gesture Recognition System Using Improved HMM Algorithm Based on 2D and 3D Space

In this paper, we explain a study on natural user interface (NUI) in human gesture recognition using RGB color information and depth information by Kinect camera from Microsoft Corporation. To achieve the goal, hand tracking and gesture recognition have no major dependencies of the work environment, lighting or users’ skin color, libraries of particular use for natural interaction and Kinect de...

متن کامل

Temporal and Hierarchical HMM for Activity Recognition Applied in Visual Medical Monitoring using a Multi-Camera System

We address in this paper an improved medical monitoring system through an automatic recognition of human activity in Intensive Care Units (ICUs). A multi camera vision system approach is proposed to collect video sequence for automatic analysis and interpretation of the scene. The latter is performed using Hidden Markov Model (HMM) with explicit state duration combine at the management of the h...

متن کامل

A New Approach For Hand Gestures Recognition Based on Depth Map Captured by RGB-D Camera

This paper introduces a new approach for hand gesture recognition based on depth Map captured by an RGB-D Kinect camera. Although this camera provides two types of information ”Depth Map” and ”RGB Image”, only the depth data information is used to analyze and recognize the hand gestures. Given the complexity of this task, a new method based on edge detection is proposed to eliminate the noise a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017